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Introduction
Morphology is a fundamental cell property associated with cell identity, state, function, and disease. Current methods to quantify morphology lack 
high discriminative power and are generally destructive to cells, limiting data that can be extracted from samples. Here, we applied artificial 
intelligence (AI) and computer vision to characterize cells in malignant effusion fluids, which represent an accessible tumor source for 
cytopathology characterization and biomarker discovery. Using the Deepcell platform, we performed real-time deep learning interpretation of 
high-content morphology data at single-cell resolution and sorted classified carcinoma cells for validation using molecular assays. This application 
of deep learning on brightfield cell images enabled multi-dimensional morphological characterization of cells present in malignant effusion fluid 
samples.

UMAP clusters were associated with quantitative computer vision morphometrics linked to carcinoma cell morphology, including cell size, shape, 
and texture features. To validate the AI model predictions, carcinoma cells were sorted for collection and further characterization using copy 
number variation (CNV), targeted sequencing, and scRNA-Seq analyses. Resulted verified accurate carcinoma predictions by the AI model and 
enrichment of carcinoma cells, as demonstrated by identified mutations that were previously undetectable in whole patient samples. This 
combination of label-free imaging, deep learning, quantitative computer vision morphometrics, and cell sorting helps leverage potentially 
actionable morphological information in tumor cells. 

Deepcell Platform

Figure 1. Deepcell workflow. (1) Single-cell sample suspension is (2) loaded onto a microfluidic chip and (3) as each cell flows past the imaging area, high resolution bright-field 
images are captured. Images are used by the (4a) deep learning AI model for multi-dimensional morphological analysis and/or (5) real-time classification and cell sorting. The 
sorted target cells can be (6) collected and processed for (7) downstream analysis. (4b) The image embeddings can be extracted (in addition or independently to sorting) and 
analyzed to generate multi-dimensional morphological profiles that can be visualized by UMAP and used to discover morphologically heterogeneous cell populations.  

(7) Downstream analysis:
● Cytology
● SNP/SNV
● CNV
● RNA-Seq
● Cell culture
● Flow cytometry
● Immunostaining 
● Functional analysis
● Other
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Figure 2. Deepcell malignant effusion AI Model training and validation.  FACs-sorted cells from effusion samples were used to capture high resolution bright-field images for 
malignant effusion AI model training and validation. (A) Summary table of biological replicates (patient samples and cell lines) and number of images used for model training and 
(B) in silico model validation. (C) The performance of the model to identify carcinoma cells from malignant effusion samples was evaluated by in silico validation and the area 
under the curve (AUC) is 0.96.  
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Figure 3. Malignant effusion AI model performance on clinical samples. (A) Biomarker-based flow cytometry (EpCAM+/Caludin4+; gray) compared to AI model (orange) 
predictions of carcinoma cell abundance in patient-derived breast, GI, gynecological, and lung cancer effusion samples. (B) Performance of AI model is highly concordant with 
biomarker-base flow cytometry assessments, with R-squared correlation value determined as 0.949. 
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Figure 5. UMAP of carcinoma cells from 3 different breast cancer patient effusion samples. (A) UMAP plot of AI model carcinoma cell predictions derived from captured 
images of unlabeled effusion samples from 3 different breast cancer patients. (B) Density histogram plots by patient, as quantified by computer vision morphometric 
measures of texture (LBP periphery, LBP center, and large black blobs) and size (radius).  
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Figure 6. scRNA-seq analysis validates cell populations of interest (carcinoma cells) in sorted ovarian cancer effusion sample. (A) Annotation of different cell 
populations was conducted on the aggregated datasets before and after imaging and sorting on the Deepcell platform. 5 cell populations were identified including 
EpCAM+ and EpCAM- tumor cells and monocyte, T cell, and other immune cell populations.  (B) Cell type and respective percent of the total cell population for bulk  and 
sorted sample. (C) Pseudo-color gene expression level of EpCAM, CLDN4 (Claudin-4), CD24 (stem cell marker), and PTPRC (CD45) expression demonstrating that 
EpCAM- cells express epithelial marker (Claudin-4) and not lymphocyte marker (PTPRC; CD45) and are epithelial cells. 
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Figure 4. UMAP of AI embeddings extracted from high-content images of the validation dataset. (A) FACS purified cells from clinical samples were imaged on the Deepcell 
platform and plotted by UMAP (labels indicated). Clustering patterns are based on morphology information detected by the AI model, with cells (dots) clustering closer being 
more visually and morphologically similar. Annotation of cell types are based on pure populations obtained by flow cytometry “ground truth”. Shared morphologies between 
mesothelial and carcinoma cells are historically challenging for cytologists to distinguish and a common cause of atypia/equivocal diagnosis, and are shown here to have 
overlapping morphological features as detected by AI. (B) Deep learning embeddings are augmented with computer vision derived features and cell radius results are shown to 
provide insight into morphological differences between cell classes. 
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Figure 7. Case studies of two sorted ovarian HGSC body fluid samples. To further validate the AI predictions, cytology and molecular analyses (CNV analysis and 
targeted mutation sequencing) were performed on samples pre- and post- processing on the Deepcell platform. (A) PAP stain was performed on cell blocks and malignant 
cells (yellow arrow) in a background of non-tumor cells were detected in pre-sorted samples. Higher purity of malignant cells was observed in sorted samples, as confirmed 
by a board certified pathologist. Cells retained intact architecture and showed higher malignant cell purity compared to bulk patient samples. Scale bars as indicated. (B) 
WGS followed by CNV analysis was performed and increased amplitude of deletions and amplifications were observed, including some identified in sorted cells but not in 
whole samples (arrows: amplifications, red; deletions, green). (C) Targeted sequencing identified two somatic p53 mutations, with respective allele frequencies.

• We developed an AI Model that can identify and isolate carcinoma cells from malignant effusion 
samples. In silico validation: AUC=0.96.

• The malignant effusion AI model performance was tested on clinical samples and carcinoma frequency 
was concordant to flow cytometry results, which we treated as ground truth. 

• Shared and differing morphologies of cells residing in malignant fluids are captured by AI and are 
consistent with known morphological heterogeneity observed by cytologists. Cell size distributions are 
similar between cancer and non-cancer cells, suggesting other features contribute to morphological 
heterogeneity. 

• AI predictions of carcinoma cells from malignant effusions were validated by scRNA-Seq, CNV profiling, 
targeted mutation analysis, and cytological analysis.  

• We developed, trained, and validated an AI model to classify carcinoma cells from malignant 
effusions and used computer vision to add biological explainability to morphological differences in 
patient samples, and validated carcinoma predictions with  downstream molecular assays. 

Conclusions

Deep learning morphology profiling identifies and enriches carcinoma cells from 
effusion samples in real-time for cytological and molecular analysis
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Malignant Effusion AI Model Training & Validation 

Validation of AI Predictions with Molecular Assays
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