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e Combining deep learning and morphometric features improves accuracy and interpretability.

e HFM characterizes and classifies synthetic cells and biological samples with high accuracy.
o Features beyond cell size are utilized.

e The Deepcell Human Foundation Model (HFM) is fast and effective at extracting cell features, enabling real time cell
classification and sorting.

e Real world applications of Deepcell’s HFM include hypothesis-free sample exploration and adaptation to specific classification
tasks.
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Figure 2. Examples of morphometric features. (A) Representative images showing 5 of
14 features describing cell shape and size. (B) Representative images showing 4 of 41
features describing pixel intensity and texture. Shown are morphometrics that describe
size and intensities of “blobs”, which relate to cellular structures like granules, vesicles.




