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Figure 5. Profiling cancer cells using morphology alone reveals previously uncharacterized heterogeneity
Figure 1. The Deepcell Workflow within lung DTQ samples (A) Clustering uging morphology. alone demons.tra.ted significant heterogeneity within
the “pure” cell lines used for the drug resistance study, with at least 5 distinct morphologies observed in both
We analyzed each of the sample types using the Deepcell Workflow (Figure 1). A2780 and H460. We imaged and sorted three lung DTCs, covering a range of cancer.cells (5% 10%, and 90%
1) Slngle cell suspension is (2) loaded onto a microfluidic chip. (3) Images of Multi-dimensional morpho[ogy can distinguish [ung adenocarcinoma from squamous cell carcinoma cancer content) and included both LA and SCC cancers, and identified six morphologically distinct clusters (B).

The six clusters are colored on the UMAP and representative images for each cluster are shown. (C) Morphology

single cells are captured and analyzed in real-time by (4) deep learning and UMAP, colored by DTC sample, shows that samples contain different compositions of the same cell types.
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Figure 4. Multi-dimensional morphology profiling distinguishes different types of lung carcinomas. (A) Dissociated tumor biopsies from

17 lung adenocarcinomas (LA) and 12 squamous cell carcinoma (SCC) cells were run on the Deepcell platform, and UMAPs of the resulting
analysis show distinct clusters for LA vs SCC morphologies. Representative images of cells from each cluster are shown. (B) A random forest

e These results suggest that the Deepcell platform has the potential to sort resistant cells out of a mixed
population or examine effects of drug treatment on specific subpopulations

Learn more at Deepcell COMm classifier can predict LA vs SCC types with >80% accuracy, as shown by the confusion matrix. (C ) The top morphological features o The method can accurately distinguish between lung adenocarcinoma and squamous cell carcinoma cells with
distinguishing the two carcinomas are shown in the table. (D) The distribution of accuracies for each sample is shown in the violin plot, 81% accuracy.
demonstrating that the 29 samples had a range of accuracies, but the majority are greater than 50% accurate to the predicted cell type. e \We demonstrated the enrichment of malignant cells from NSCLC tumor tissue using morphology alone.

e Single-cell gene expression analysis showed distinct transcriptional profiles in cancer-related pathways in the
subpopulation of Deepcell sorted cancer cells

e These results warrant further investigation of the potential link between morphology and functional phenotype
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