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Label-free multi-dimensional morphology 
profiling identifies and enriches tumor cells 
in heterogeneous populations

Highlights

• Tumor cell detection often relies on biomarker 
labels, limiting analysis to biomarker-
specified populations.

• The REM-I platform characterizes and 
sorts cells without labels based on multi-
dimensional morphometric and deep learning 
derived features of morphology.

• Quantitative multi-dimensional morphology 
information at the single cell level provides 
an additional analyte to resolve cancer 
heterogeneity.

Introduction

Tumors are composed of heterogeneous assortments 
of cells with distinct genetic and phenotypic 
characteristics that may drive therapeutic resistance, 
immune evasion, and disease progression1, 2. 
The advent of single cell technologies has enabled 
deep profiling of individual cells within a tumor 
microenvironment, leading to a better understanding 
of tumor biology and subsequently more effective 
cancer treatment strategies3, 4. While profiling 
technologies such as flow cytometry and single cell 
sequencing yields insight on tumor composition, 
cells are sometimes no longer amenable to additional 
downstream studies after being subjected to 
antibody staining or destructive analytical processes 
such as cell lysis5. Traditional sorting methods such as 
fluorescence-activated cell sorting (FACS) rely on 
a limited set of biomarkers, which cannot cover the 
full extent or be readily available for all distinct cell 
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Figure 1. REM-I platform workflow and AI image analysis. Single cell suspensions are loaded onto a microfluidic chip for high-speed, high-resolution imaging. Images are 
analyzed in real-time by self-supervised deep learning to extract morphological features and inform sorting decisions based on predicted cell class. Data is stored and 
analyzed on Axon, the Deepcell data suite, while sorted cells of interest can be assayed further with molecular or functional studies.

properties. Additionally, dependence on antibodies, 
dyes/stains, and biomarkers to denote cell identity 
may inadvertently create sampling bias by depleting 
biomarker-negative but potentially biologically 
interesting cell populations.

Hidden in plain sight is cell morphology information, 
which has historically been both the gold standard 
for cell and disease characterization, as well as hard 
to objectively and reproducibly quantify. Traditionally, 
cell morphology is studied qualitatively through 
microscopes, a process that’s inherently slow, difficult 
to scale, and relies on human interpretation. Multi-
dimensional morphology analysis enabled by AI and 
computer vision morphometrics provides higher 
resolution and biological insight while reducing labor-
intensive cell processing manipulations. The REM-I 
platform from Deepcell performs multi-dimensional 
morphology analysis and sorting of unlabeled single 
cells using AI, advanced imaging, and microfluidics to 
assess population heterogeneity beyond biomarkers.

Methods

The REM-I platform consists of a benchtop instrument 
for sample imaging and sorting, a self-supervised 
deep learning foundation model (Human Foundation 
Model; HFM), and Axon, the Deepcell data suite for 
cloud-enabled data storage and analysis. To begin an 
experimental run, samples from established human 
cell lines or dissociated tissue biopsies in single 

cell suspension are loaded onto a microfluidic chip. 
Images of single cells are captured and analyzed in 
real-time by a combined deep learning and morpho-
metric (computer vision) foundation model to generate 
multi-dimensional quantitative morphological 
profiles. User-defined cell clusters can then be sorted 
for downstream functional or molecular analysis. 
In addition, the collected morphology data (referred 
to as embeddings) can be further analyzed as a unique 
modality, and users can continuously train customized 
models for specific applications.

Results

Characterization of tumor cell population 
composition by morphology

Melanoma lesions are generally composed of primary 
tumor cells as well as a diverse set of immune cells in 
various activation states. To simulate these tumors 
and assess our ability to differentiate cells based on 
morphology alone, we created an in-silico mixture 
of cell types typically represented in solid tumors, 
including: human melanoma cell lines (SK-MEL-1, 
SK-MEL-3, MNT-1), in vitro activated T cells from PBMC, 
plasma cells from purified bone marrow, stromal cells 
from patient lymph nodes, and CD45+ immune cells 
(activated T, T, B, and NK cells) and macrophages 
isolated from metastatic melanoma biopsies. (Fig. 1). 
A total of 2.12 x 106 cell images were captured, then 
combined deep learning and morphometric features 
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were extracted and combined for embeddings 
analysis based on the Deepcell HFM v1. Features 
were standardized, then data were projected into a 
lower dimensional PCA basis. Nearest neighbors were 
computed in the PCA space, then these neighbors 
were used to identify clusters (Leiden algorithm) and 
compute 2D Uniform Manifold Approximation and 
Projections (UMAP, Fig. 2A). Notably, melanoma cells 
are morphologically distinct and cluster separately 
from non-tumor cells. Tumor cell lines SK-MEL-1 
and SK-MEL-3 (cluster 10) are distinct from MNT-1 
(cluster 3) (Fig. 2B), as seen in images showing cluster 
3 cells with higher granularity and cluster 10 cells 
exhibiting a smoother appearance. Furthermore, 
distinct immune cell types are variably located in the 
morphology UMAP, indicating cells have subtle but 
separable morphologies. Larger immune cells with 
more granular features (macrophages) cluster toward 
the top of the morphology UMAP, while smaller cells 
with no granularity (activated T cells, plasma cells) are 
located in the lower clusters of the UMAP. Together, the 
data suggest the REM-I platform can differentiate cell 
types represented in melanoma tumors based solely 
on multi-dimensional morphological profiles. These 
include tumor versus non-tumor cells, activated versus 
quiescent lymphocytes, and different immune cells 

(plasma cells, macrophages, and lymphocytes) with 
varying granularity features.

Computer vision morphometrics reveals differential 
cell features in melanoma cell lines

Skin and hair pigmentation is the result of melanosome 
melanin biosynthesis in epidermal melanocytes6. 
The multi-step melanin biosynthesis process is 
highly regulated, and has recently been implicated in 
melanoma progression7-11. Despite the implications 
of melanin biosynthesis with melanoma and 
melanoma pathogenesis, existing technologies rely 
on pathway biomarkers to measure pigmentation 
levels rather than a direct quantification of melanin 
granules in melanocytes12. Currently, it is difficult to 
non-destructively sort cells with pigmentation. One 
option is to utilize intracellular biomarkers followed 
by FACS, but this method is not common and renders 
cells incompatible for additional functional studies. 
Using Axon, the Deepcell data suite, we isolated the 
three established melanoma cell lines with varying 
degrees of pigmentation13 from the larger dataset 
shown in Fig. 2, and used computer vision combined 
with deep learning to extract pigmentation features 
(Fig. 3). Pigmented melanoma cells (MNT-1) were 

A. B.

Figure 2. Morphologically distinct cells cluster separately. A. Morphology UMAP from cell image feature embeddings colored by cell type, which is a heterogeneous collection 
of melanoma, immune, and stromal cells derived from cell lines and patient biopsies. B. Morphology UMAP colored by cluster imputed using the Leiden algorithm, with 
randomly chosen representative images from each cluster shown. 
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morphologically distinct and clustered separately from 
other melanoma cells (SK-MEL-1 and SK-MEL-3) with 
low levels of melanin (Fig. 3A-B). Morphometric analysis 
further showed the population of highly pigmented 
cells exhibit heterogeneity with differing levels of 
pigmentation (Fig. 3C), as shown by quantification 
of this morphological feature. These results indicate 

the REM-I platform can clearly detect pigmented 
cells and different levels of pigmentation, and allows 
for subsequent cell sorting based on user interest for 
downstream studies (e.g., cell culture, drug studies, 
and treatment response).

Figure 3. Pigmentation is a separable morphological feature distinguishing melanoma cells. A. Morphology UMAP of a heterogeneous collection of melanoma cell lines 
and immune/stromal cells derived from patient biopsies (as seen in Fig. 2A). B. Re-projected morphology UMAP using filtered data from Fig. 3A showing only melanoma 
cells colored by cell line. C. (Left) Morphology UMAP colored by cluster imputed using the Leiden algorithm, with randomly chosen representative images from each cluster 
shown. (Right) Density plots showing mean pixel intensity, with lower mean value (i.e., darker pixels) linked to more pigmentation. 
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User-defined multi-dimensional morphology clusters 
have distinct molecular profiles

Lung cancer is highly heterogeneous, and generally 
divided into two groups: small cell lung cancer (SCLC) 
and non-small cell lung cancer (NSCLC). SCLC makes 
up approximately 15% of lung cancer, while NSCLC 
comprises 85%14-15. To perform multi-dimensional 
morphology analysis in NSCLC, we developed an 

AI model using pure cell populations derived from 
dissociated tumor cells (DTC) biopsies. User-defined 
clusters were sorted and subjected to copy number 
variation (CNV) analysis and bulk RNA-Sequencing 
(RNA-Seq). Isolated morphology clusters were viable 
and showed high concordance with CNV and bulk 
RNA-Seq expression profiles (Fig. 4-5). Notably, sorted 
morphology clusters were composed of increased 

Figure 4. Morphologically distinct cell clusters from human NSCLC tissue. A. Morphology UMAP of cells residing in a NSCLC DTC biopsy sample. Six morphologically 
distinct clusters (1, 2, 3, 4, 5, 6) were identified and colored by the assigned cluster number. B. Clusters were isolated by the Deepcell platform via user-defined sorting and 
processed for CNV profiling. Results showed sorted morphology clusters exhibited distinct CNV patterns consistent with cancer cell profiles in clusters 2, 5, and 6.

Figure 5. Transcriptomic characterization of morphology clusters. A. Bulk RNA-seq analysis followed by B. principal component analysis (PCA) was performed on each 
morphology cluster. 
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populations of respective cell classes. For instance, 
clusters 2, 5, and 6 showed enrichment of tumor 
cells while clusters 1, 3, and 4 showed enrichment of 
immune cells (Fig. 5A-B), indicating morphology may 
be reflective of cell identity and function. Notably, 
detection of multiple cancer cell clusters based on 
multi-dimensional morphology may be reflective 
of the heterogeneous nature of the tumor sample, 
which may not have been revealed by a constrained 
panel of biomarkers. Together, this data suggest cell 
morphology can be leveraged to characterize and 
isolate cells of interest based on morphology and 
enable integrative multi-omics analysis workflows.

Conclusion

• The REM-I platform combines label-free imaging, 
deep learning, computer vision morphometrics, and 
gentle cell sorting to harness multi-dimensional single 
cell morphology as a quantitative biological readout.

• Pigmentation, among other morphological features 
extracted by combined AI and morphometrics, can be 
used in the assessment of melanoma cells using the 
REM-I platform.

• Cell populations characterized with specific 
morphological profiles have distinct molecular profiles.

• Morphologically distinct cells (normal vs. tumor) are 
distinguishable in AI and morphometric embedding 
space, suggesting morphology may be used to profile 
cell type and function.

Resources

Analyze high-dimensional morphology enabled by self-
supervised deep learning by exploring the following 
datasets at https://exploredata.deepcell.com/. 

 → Melanoma cell identification

 → Heterogeneity in melanoma

 → Lung cancer tumor microenvironment 

https://exploredata.deepcell.com/
https://exploredata.deepcell.com/register
https://exploredata.deepcell.com/register
https://exploredata.deepcell.com/register
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